CHAPTER 8
LOGARITHMS AND THE SLIDE RULE

Logarithms ~represent a specialized use of
exponents. By means of logarithms, computa-
tion with large masses of data can be greatly
simplified. For example, when logarithms are
used, the process of multiplication is replaced
by simple addition and division is replaced by
subtraction. Raising to a power by means of
logarithms is done in a single multiplication,
and extracting a root reduces to simple division.

DEFINITIONS

In the expression 2° = 8, the number 2 is
the base (not to be confused with the base of the
number system), and 3 is the exponent which
must be used with the base to produce the num-
ber 8. The exponent 3 is the logarithm of 8
when the base is 2. This relationship is usually
stated as follows: The logarithm of 8 to the
base 2 is 3. In general, the logarithm of a
number N with respect to a given base is the
exponent which must be used with the base to
produce N. Table 8-1 illustrates this.

Table 8-1.—Logarithms with various bases.

Exponential form Logarithmic form
23 = 8 log,8 = 3
42 = 16 log,16 = 2
59 = 1 log 1l =0
27%3 = 9 log ,,9 = 2/3

Table 8-1 shows that the logarithmic rela-
tionshipmay be expressed equally well ineither
of two forms; these are the exponential form
and the logarithmic form. Observe, in table
8-1, that the base of a logarithmic expression
is indicated by placing a subscript just below
and to the right of the abbreviation 'log.” Ob-
serve also that the word 'logarithm™ is abbre-
viated without using a period.
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The equivalency of the logarithmic and ex-
ponential forms may be used to restate the fun-
damental definition of logarithms in its most
useful form, as follows:

b* = N implies that log,N = x

In words, this definition is stated as follows: If
the base b raised to the x power equals N, then
x is the logarithm of the number N to the base b.

One of the many uses of logarithms may be
shown by an example in which the base is 2.
Table 8-2 shows the powers of 2 from 0 through
20. Suppose that we wish to use logarithms to
multiply the numbers 512 and 256, as follows:

From table 8-2, 512 = 2°
256 = 28
Then 512 x 256 = 2° x 28
= 217
and from the table again 217 = 131072

It is seen that the problem of multiplication
is reduced to the simple addition of the expo-
nents 9 and 8 and finding the corresponding
power in the table.

Table 8-2 (A) shows the base 2 in the expo-
nential form with its corresponding powers.
The actual computation in logarithmic work
does not require that we record the exponential
form. All that is required is that we add the
appropriate exponents and have available a
table in which we can look up the number cor-
responding to the new exponent after adding.
Therefore, table 8-2 (B) is adequate for our
purpose. Solving the foregoing example by this
table, we have the following:

log, 512
log, 256
log, of the product

17

Therefore, the number we seek is the one in
the table whose logarithm is 17. This number
is 131,072. In this example, we found the expo-
nents directly, added them since this was a
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Table 8-2.—Exponential and logarithmic
tables for the base 2.

(4) Powers of 2 from | ) LAETILRE o7 the

€ sponding powers

Log Number

20 = 1 0 1
2! = 2 1 2
2?2 = 4 2 4
23 = 8 3 8
24 = 16 4 16
25 = 32 5 32
26 = 64 6 64
27 = 128 7 128
28 = 256 8 256
2% = 512 9 512
210 1024 10 1024
21 = 2048 11 2048
212 = 4098 12 4096
2% = 8192 18 8192
24 = 18384 14 16384
215 = 32768 15 32768
2% = 65536 16 65536
27 = 131072 17 131072
21 - 262144 18 262144
21 = 524288 19 524288
2% = 1048576 | 20 1048576

multiplication problem, and located the corre-
sponding power. This avoided the unnecessary
step of writing the base 2 each time.

Practice problems. Use the logarithms in
table 8-2 to perform the following multiplication:

1. 64 x 128 3. 128 x 4,096
2. 1,024 x 256 4. 512 x 2,048

Answers:
1. 8,192 3. 524,288
2. 262,144 4. 1,048,576
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NATURAL AND COMMON LOGARITHMS

Many natural phenomena, such as rates of
growth and decay, are most easily described in
terms of logarithmic or exponential formulas.
Furthermore, the geometric patterns in which
certain seeds grow (for example, sunflower
seeds) is a logarithmic spiral. These facts ex-
plain the name 'natural logarithms." Natural
logarithms use the base e, which is an irra-
tional number approximately equal to 2.71828.
This system is sometimes called the Napierian
system of logarithms, in honor of John Napier,
who is credited with the invention of logarithms.

To distinguish naturallogarithms from other
logarithmic systems the abbreviation, In, is
sometimes used. When In appears, the base is
understood to be e and need not be shown. For
example, either log, 45 or In 45 signifies the
natural logarithm of 45.

COMMON LOGARITHMS

As has been shown in preceding paragraphs,
any number may be used as a base for a system
of logarithms. The selection of a base is a
matter of convenience. Briggs in 1617 found
that base 10 possessed many advantages not
obtainable in ordinary calculations with other
bases. The selection of 10 as a base proved so
satisfactory that today it is used almost exclu-
sively for ordinary calculations. Logarithms
with 10 as a base are therefore called COM-
MON LOGARITHMS.

When 10 is used as a base, it is not neces-
sary to indicate it in writing logarithms. For
example,

log 100 = 2
is understood to mean the same as

log ,, 100 = 2

If the base is other than 10, it must be speci-
fied by the use of a subscript to the right and
below the abbreviation "log." As noted in the
foregoing discussion of natural logarithms, the
use of the distinctive abbreviation “‘In’’ elimi-
nates the need for a subscript when the base
is e.

It is relatively easy to convert common log-
arithms to natural logarithms or vice versa, if
necessary. It should be noted further that each
system has its peculiar advantages, but for
most everyday work, the common system is
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more often used. A simple relation connects
the two systems. If the common logarithm of a
number can be found, multiplying by 2.3026
gives the natural logarithm of the number. For
example,

log 1.60 = 0.2041
In 1.60 = 2.3026 x 0.2041
= 0.4700

Thus the natural logarithm of 1.60 is 0.4700,
correct to four significant digits.

Conversely, multiplying the natural loga-
rithm by 0.4343 gives the common logarithm of
a number. As might be expected, the conver-
sion factor 0.4343 is the reciprocal of 2.3026.
This is shown as follows:

= 0.4343

2.3026
Positive Integral Logarithms

The derivation of positive whole logarithms
is readily apparent. For example, we see in
table 8-3 (B) that the logarithm of 10 is 1. The
number 1 is simply the exponent of the base 10
which yields 10. This is shown in table 8-3 (A)

opposite the logarithmic equation. Similarly,
10°=1........... log 1 =0
102=100......... log 100 = 2
103 = 1,000 ...... log 1,000 = 3
10* = 10,000.. ... log 10,000 = 4

Table 8-3.—Exponential and corresponding logarithmic notations using base 10.

A B.
107 =153 - 0.0001 log 0.0001 = -4
107 =33 - 0.001 log 0.001 = -3
107 =35 - 0.01 log 001 =-2
107! = _116— = 0.1 log 0.1 = -1
v o Ao Y10 0.31623 log 0.31623 = -0.5
Nio 10
= 0.5 -1
10° = 1 log 1 =0
102 = N10 = 3.1623 log 3.1623 = 0.5
10! = 10 log 10 =1
10¥% = 10~V10 = 31.623 log 31.623 = 1.5
102 = 100 log 100 = 2
1052 = 102(~N10) =  316.23 log  316.23 = 2.5
103 = 1,000 log 1,000 =3
10772 = 103 (¥10) = 3162.3 log 3162.3 = 3.5
104 = 10,000 log 10,000 =4
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Positive Fractional Logarithms

Referring to table 8-3, notice that the loga-
rithm of 1 is 0 and the logarithm of 10 is 1.
Therefore, the logarithm of a number between
1 and 10 is between 0 and 1. An easy way to
verify this is to consider some numbers be-
tween 1 and 10 which are powers of 10; the ex-
ponent in each case will then be the logarithm
we seek. Of course, the only powers of 10
which produce numbers between 1 and 10 are
fractional powers.

EXAMPLE: 1012 = 3.1623 (approximately)
10%-5 = 3.1623
Therefore, log 3.1623 = 0.5

Other examples are shown in the table for
1032, 1052, and 10772, Notice that the num-
ber that represents 1032, 31.623, logically
enough lies between the numbers representing
10* and 10°—that is, between 10 and 100. No-
tice also that 10%? appears between 102 and
103, and 1072 lies between 10° and 10%.

Negative Logarithms

Table 8-3 shows that negative powers of 10
may be fitted into the system of logarithms.

We recall that 10~! means -

i or the decimal
fraction, 0.1. What is the logarithm of 0.1?

SOLUTION: 107! = 0.1; log 0.1 = -1

Likewise 102 = 0.01; log 0.01 = -2

Negative Fractional Logarithms

Notice in table 8-3 that negative fractional
exponents present no new problem in loga-
rithmic notation. For example, 10"!?means

1
V10’
1 _ V10 431623
Yio 10
What is the logarithm of 0.31623 ?
SOLUTION:

1072 = 0.31623; log 0.31623 = - 1

1
1

e

o
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Table 8-3 shows logarithms for numbers
ranging from 0.0001 to 10,000. Notice that
there are only 8 integral logarithms in the en-
tire range. Excluding zero logarithms, the
logarithms for all other numbers in the range
are fractional or contain a fractional part. By
the year 1628, logarithms for all integers from
1 to 100,000 had been computed. Practically
all of these logarithms contain a fractional
part. It should be remembered that finding the
logarithm of a number is nothing more than ex-
pressing the number as a power of 10. Table
8-4 shows the numbers 1 through 10 expressed
as powers of 10. Most of the exponents which
comprise logarithms are found by methods be-
yond the scope of this text. However, it is not
necessary to know the process used to obtain
logarithms in order to make use of them.

Table 8-4.—The numbers 1 through 10
expressed as powers of 10.

1=10° 6 = 10077815
2 = 100.30103 7 = 10 0.84510
3 = 100.47712 8 = 100.90309
4 = 100.60206 9 = 100.95424
5 = 100-6%%7 10 = 10!

COMPONENTS OF LOGARITHMS

The fractional part of a logarithm is usually
written as a decimal. The whole number part
of a logarithm and the decimal part have been
given separate names because each plays a
special part in relation to the number which the
logarithm represents. The whole number part
of a logarithm is called the CHARACTERISTIC.
This part of the logarithm shows the position of
the decimal point in the associated number.
The decimal part of a logarithm is called the
MANTISSA.

For a particular sequence of digits making
up a number, the mantissa of a common loga-
rithm is always the same regardless of the
position of the decimal point in that number.
For example, log 5270 = 3.72181; the mantissa
is 0.72181 and the characteristic is 3.

CHARACTERISTIC

The characteristic of a common logarithm
shows the position of the decimal point in the
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associated number, The characteristic for a
given number may be determined by inspection,
It will be remembered that a common logarithm
is simply an exponent of the Vvase 10, It is the
power of 10 when a number is written in
scientific notation.

When we write log 360 = 2.55630, we under-
stand this to mean 10 2-556% = 360. We know
that the number is 360 and not 36 or 3,600 Pe-
cause the characteristic is 2. We know 10" is
10, 102 is 100, and 10° is 1,000. Therefore,
the number whose value is 102-5563° must lie
between 100 and 1,000 and of course any num-
ber in that range has 3 digits.

Suppose the characteristic had been 1: where
would the decimal point in the number be
placed? Since 10! is 10 and 102 is 100, any
number whose logarithm is between 1 and 2
must lie between 10 and 100 and will have 2
digits. Notice how the position of the decimal
point changes with the value of the character-
istic in the following examples:

log 36,000 = 4.55630

log 3,600 = 3.55630
log 360 = 2,55630
log 36 = 1,55630
log 3.6 = 0.55630

Note that it is only the characteristic that
changes when the decimal point is moved. An
advantage of using the base 10 is thus revealed:
If the characteristic is known, the decimal point
may easily be placed. If the number is known,
the characteristic may be determined by in-
spection; that is, by observing the location of
the decimal point.

Although an understanding of the relation
of the characteristic to the powers of 10 is
necessary for thorough comprehension of loga-
rithms, the characteristic may be determined
mechanically by application of the following
rules:

1. For a number greater than 1, the charac-
teristic is positive and is one less than the
number of digits to the left of the decimal point
in the number,

2. For a positive number less than 1, the
characteristic is negative and has an absolute
value one more than the number of zeros be-
tween the decimal point and the first nonzero
digit of the number,

Table 8-5 contains examples of each type of
characteristic.

Practice problems. In problems 1 through
4, write the characteristic of the logarithm for
each number. In 5 through 8, place the decimal

Table 8-5.—Positive and negative characteristics.
W

Digits in number
Number Power of 10 to the left of Characteristic
decimal point
Between:
134 102 and 103 3 2
13.4 10! and 102 2 1
1.34 10° and 10° 1 0
Zeros between
decimal point
and first non-
zero digit
0.134 10~! and 10° 0 -1
0.0134 102 and 107! 1 -2
0.00134 10 73 and 1072 2 -3
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poiht in each number as indicated by the char-
acteristic (c) given for each.

1. 4,321 2. 1.23 3. 0.05 4, 12

5. 123; ¢ = 4 6. 8,210; ¢ =0

7.8, ¢c=-1 8. 321; ¢ = -2
Answers:

1. 3 2. 0 3. -2 4. 1

5. 12,300 6. 8.210 7. 0.8 8. 0.0321

Negative Characteristics

When a characteristic is negative, such as
-2, we do not carry out the subtraction, since
this would involve a negative mantissa. There
are several ways of indicating a negative char-
acteristic. Mantissas as presented in the table
in the appendix are always positive and the sign
of the characteristic is indicated separately.
For example, where log 0.023 = 3.36173, the
bar over the 2 indicates that only the charac-
teristic is negative—that is, the logarithm is
-2 + 0.36173.

Another way to show the negative character-
istic is to place it after the mantissa. In this
case we write 0.36173-2.

A third method, which is used where possi-
ble throughout this chapter, is to add a certain
quantity to the characteristic and to subtract
the same quantity to the right of the mantissa.
In the case of the example, we may write:

2.36173
10 -10
8.36173-10

In this way the value of the logarithm remains
the same but we now have a positive character-
istic as well as a positive mantissa.

MANTISSA

The mantissa is the decimal part of a loga-
rithm. Tables of logarithms usually contain
only mantissas since the characteristic can be
readily determined as explained previously.
Table 8-6 shows the characteristic, mantissa,
and logarithm for several positions of the deci-
mal point using the sequence of digits 4, 5, 8.
It will be noted that the mantissa remains the
same for that particular sequence of digits, re-
gardless of the position of the decimal point.
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Table 8-6.—Effect of changes in the
location of the decimal point.

Number ct:;ﬁr:ifc' Mantissa | Logarithm
45,600 4 0.6590 | 4.6590
4,560 3 0.6590 | 3.6590
456 2 0.6590 | 2.6590
45.6 1 0.6590 | 1.6590
4.56 0 0.6590 | 0.6590
0.456 -1 0.6590 | 0.6590-1
0.0456 -2 0.6590 | 0.6590-2
0.00456 | -3 0.6590 | 0.6590-3

Appendix I of this training course is a table
which includes the logarithms of numbers from
1 to 100. For our present purpose in using this
table, we are concerned only with the first and
sixth columns.

The first column contains the number and
the sixth column contains its logarithm. For
example, if it is desired to find the logarithm
of 45, we would find the number 45 in the first
column, look horizontally across the page to
column 6 and read the logarithm, 1.65321. A
glance down the logarithm column will reveal
that the logarithms increase in value as the
numbers increase in value.

It must be noted in this particular table that
both the mantissa and the characteristic are
given for the number in the first column. This
is simply an additional aid, since the charac-
teristic can easily be determined by inspection.

Suppose that we wish to use the table of
Appendix I to find the logarithm of a number
not shown in the ''number' column. By recall-
ing that the mantissa does not change when the
decimal point moves, we may be able to deter-
mine the desired logarithm. For example, the
number 450 does not appear in the number col-
umn of the table. However, the number 45 has
the same mantissa as 450; the only difference
between the two logs is in their characteristics.
Thus the logarithm of 450 is 2,65321,

Practice problems. Find the logarithms of
the following numbers:
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1. 64 2. 98 3. 6400 4. 9.8
Answers:

1. 1.80618 2, 1.99123

3. 3.80618 4. 0.99123

THE SLIDE RULE

In 1620, not long after the invention of loga-
rithms, Edmond Gunter showed how logarithmic
calculations could be carried out mechanically.
This is done by laying off lengths on a rule,
representing the logarithms of numbers, and by
combining these lengths in various ways. The
idea was developed and with the contributions
of Mannheim in 1851 the slide rule came into
being as we know it today.

The slide rule is a mechanical device by
which we can carry out any arithmetic calcula-
tion with the exception of addition and subtrac-
tion. The most common operations with the
slide rule are multiplication, division, finding
the square or cube of a number, and finding the
square root or cube root of a number. Also
trigonometric operations are frequently per-
formed. The advantage of the slide rule is that
it can be used with relative ease to solve com-
plicated problems. One limitation is that it
will give results with a maximum of only three
accurate significant digits. This is sufficient
in most calculations, however, since most phys-
ical constants are only correct to two or three
significant digits. When greater accuracy is
required, other methods must be used.

A simplified diagram of a slide rule is pic-
tured in figure 8-1. The sliding, central part
of the rule is called the SLIDE. The movable
glass or plastic runner with a hairline imprinted
on it is called the INDICATOR. Thereis a C
scale printed on the slide,and a D scale exactly
the same as the C scale printed on the BODY
or STOCK of the slide rule. The mark that is
associated with the primary number 1 on any
slide rule scale is called the INDEX. There is

HAIRLINE SLIOE

l l [ RN EEEErS. i
T

°‘ilV|IIIV‘T]'z Y M T i lo
aoov/ moucnoa;

Figure 8-1.—Simplified diagram of a slide rule.

INDEX
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an index at the extreme left and at the extreme
right on both the C and D scales. There are
other scales, each having a particular use.
Some of these will be mentioned later.

SLIDE RULE THEORY

We have mentioned that the slide rule is
based on logarithms. Recall that, to multiply
two numbers, we simply add their logarithms.
Previously we found these logarithms in tables,
but if the logarithms are laid off on scales such
as the C and D scale of the slide rule, we can
add the lengths, which represent these loga-
rithms. To make such a scale we could mark
off mantissas ranging from 0 to 1 on a rule as
in figure 8-2. We then find in the tables the
logarithms for numbers ranging from 1to 10
and write the number opposite its correspond-
ing logarithm on the scale.

NUNBER

-~
O - w

1

i

T T T T Y
LOGARITHM O ol 0z O 04 .5 O

Figure 8-2.—Logarithms and corresponding
numbers on a scale.

Table 8-7 lists the numbers 1 through 10
and their corresponding logarithms to three
places. These numbers are written opposite
their logarithms on the scale shown in figure
8-2. If we have two such scales, exactly alike,
arranged so that one of them is free to slide
along the other, we can perform the operation
of multiplication, for example, by ADDING
LENGTAHS; that is, by adding logarithms. For
example, if we wish to multiply 2 x 3, we find
the logarithm of 2 on the stationary scale and
move the sliding scale so that its index is over
that mark. We then add the logarithm of 3 by
finding that logarithm on the sliding scale and
by reading below it, on the stationary scale, the
logarithm that is the sum of the two.

Since we are not interested in the logarithms
themselves, but rather in the numbers they
represent, it is possible to remove the loga-
rithmic notation on the scale in figure 8-2, and
leave only the logarithmically spaced number
scale. The C and D scales of the ordinary slide
rule are made up in this manner. Figure 8-3
shows the multiplication of 2 x 3. Although the
logarithm scales have been removed, the num-
bers 2 and 3 in reality signify the logarithms of



Chapter 8 —LLOGARITHMS AND THE SLIDE RULE

Table 8-7.—Numbers and their
corresponding logarithms.

Number | Logarithm |i Number | Logarithm
1 ~ 0.000 6 0.778
2 0.301 7 0.845
3 0.4717 8 0.903
4 0.602 9 0.954
5 0.699 I 10 1.000
2x3 6
l i /N £
[ . o/ 3 N EERN
0.30 0.477

Figure 8-3.—Multiplication by use of
the slide rule.

2 and 3, namely, 0.301 and 0.477; the product 6
on the scale really signifies the logarithm of 6,
that is, 0.778. Thus, although logarithms are
the underlying principle, we are able to work
with the numbers directly.

It should be noted that the scale is made up
from mantissas only. The characteristic must
be determined separately as in the case where
tables are used. Since mantissas identify only
the digit sequence, the digit 3 on the slide rule
represents not only 3 but 30, 300, 0.003, 0.3,
and so forth. Thus, the divisions may repre-
sent the number multiplied or divided by any
power of 10. This is true also for numbers
that fall between the divisions. The digit se-
quence, 1001, could represent 100.1, 1.001,
0.01001, and so forth. The following example
shows the use of the same set of mantissas
which appear in the foregoing example, but with
a different characteristic and, therefore, a dif-
ferent answer:
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EXAMPLE: Use logs (positions on the slide
rule) to multiply 20 times 30.

SOLUTION:
log 20 = 1.301 (2 on the slide rule)
log 30 = 1.477 (3 on the slide rule)

log of answer = 2.778 (6 on the slide rule)

Since the 2 in the log of the answer is
merely the indicator of the position of the deci-
mal point in the answer itself, we do not expect
to find it on the slide rule scale. As in the
foregoing example, we find the digit 6 opposite
the multiplier 3. This tirthe, however, the 6
represents 600, because the characteristic of
the log represented by 6 in this problem is 2.

READING THE SCALES

Reading a slide rule is no more complicated
than reading a yard stick or ruler, if the dif-
ferences in its markings are understood.

Between the two indices of the C or D scales
(the large digit 1 at the extreme left and right
of the scales) are divisions numbvered 2, 3, 4,

,5,%8,7,8,and 9. Each-length between two con-
secutive divisions is divided into 10 sections
and each section is divided into spaces. (See

fig. 8-4.)

DIVISION
A
SECTION
SPACE ["*‘,

] |
¢ “mlunlz P ]
D I [:lll["ll'z I3 I

2

Figure 8-4.—Division, section, and [space of
a slide rule scale.

Notice that the division between 1 and 2
occupies about one-third of the length of the
rule. This is sufficient space in which to write
a number for each of the section marks. The
sections in the remaining divisions are not
numbered, because the space is more limited.
Notice also that in the division between 1 and 2,
the sections are each divided into 10 spaces.
The sections of the divisions from 2 to 4 are



MATHEMATICS, VOLUME 1

subdivided into only 5 spaces, and those from
4 to the right index are subdivided into only 2
spaces. These subdivisions are so arranged
because of the limits of space.

Only the sequence of significant digits is
read on the slide rule. The position of the dec-
imal point is determined separately. For ex-
ample, if the hairline of the indicator is in the
left-hand position shown in figure 8-5, the sig-
nificant digits are read as follows:

|~

03

Figure 8-5.—Readings in the first division
of a slide rule.

1. Any time the hairline falls in the first
division, the first significant digit is 1.

2. Since the hairline lies between the index
and the first section mark, we know the number
lies between 1,0 and 1.1, or 10 and 11, or 100
and 110, etc. The second significant digit is 0.

3. We next find how far from the index the
hairline is located. It lies on the marking for
the third space.

4. The three significant digits are 103.

In the second example shown in figure 8-5,
the hairline is located in the first division, the
ninth section, and on the fourth space mark of
that section. Therefore, the significant digits
are 194.

Thus, we see that any number falling in the
first division of the slide rule will always have
1 as its first significant digit. It can have any

TEN SPACES IN EACH
SECTION

I LU |

number from 0 through9 as its second digit, and
any number from 0 through 9 as its third digit.
Sometimes a fourth digit can be roughly approx-
imated in this first division, but the number is
really accurate to only three significant digits.

In the second and third divisions, each sec-
tion is divided into only 5 spaces. (See fig.8-6.)
Thus, each space is equal to 0.2 of the section.
Suppose, for example, that the hairline lies on
the third space mark after the large 2 indicat-'
ing the second division. The first significant
digit is 2. Since the hairline lies between 2 and
the first section mark, the second digit is 0.
The hairline lies on the third space mark or
0.6 of the way between the division mark and’
the first section mark, so the third digit is 6. '
Thus, the significant digits are 206. Notice -
that if the hairline lies on a space mark the
third digit can be written accurately; otherwise
it must be approximated.

From the fourth division to the right index,
each section is divided into only two spaces.
Thus, if the hairline is in the fourth division
and lies on the space mark between the sixth
and seventh sections, we would read 465. If the
hairline did not fall on a space mark, the third
digit would have to be approximated.

OPERATIONS WITH THE SLIDE RULE

There are two parts in solving problems
with’ a slide rule. In the first part the slide
rule is used to find the digit sequence of the
final result. The second part is concerned with
the placing of the decimal point in the result.
Let us consider first the digit sequence in mul-
tiplication and division.

Multiplication

Multiplication is performed on the C and D
scales of the slide rule. The following proce-
dure is used:

ONLY FIVE SPACES IN EACH
SECTION

——rrn

I ILLERALRLS I

i

2 3

HAIRLINE /

Figure 8-6.—Reading in the second division of a slide rule.
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1. Locate one of the factors to be multiplied
on the D scale, disregarding the decimal point.

2. Place the index of the C scale opposite
that number.

3. Locate the other factor on the C scale
and move the hairline of the indicator to cover
this factor.

4. The product is on the D scale under the
hairline.

Sometimes in multiplying numbers, such as
25 x 6, the number on the C scale extends to
the right of the stock and the product cannot be
read. In such a case, we simply shift indices.
Instead of the left-hand index of the C scale,
the right-hand index is placed opposite the fac-
tor on the D scale. The rest of the problem
remains the same. By shifting indices, we are
simply multiplying or dividing by 10, but this
plays no part in reading the significant digits.
Shifting indices affects the characteristic only.
EXAMPLE: 252 x 3 = 756

1. Place the left index of the C scale over
252,

2. Locate 3 on the C scale and set the hair-
line of the indicator over it.

3. Under the hairline on the D scale read
the product, 756.
EXAMPLE: 4 x 64 = 256

1. Place the right index of the C scale
over 4. .

2. Locate 64 on the C scale and set the
hairline of the indicator over it.

3. Under the hairline on the D scale read
the product, 256.

Practice problems. Determine the following
products by slide rule to three significant
digits:

1. 2.8 x 16 3. 6 x 85

2. Tx 1.3 4. 2.56 x 3.5
Answers:

1. 44.8 3. 510

2. 9.10 4. 8.96

Division

Division being the inverse of multiplication,
the process of multiplication is reversed to

perform division on a slide rule. We subtract
the length representing the logarithm of the
divisor from the length representing the loga-
rithm of the dividend to get the logarithm of the
quotient.

The procedure is as follows:

1. Locate the dividend on the D scale and
place the hairline of the indicator over it.

2. Move the slide until the divisor (on the C
scale) lies under the hairline.

3. Read the quotient on the D scale opposite
the C scale index. )

If the divisor is greater numerically than
the dividend, the slide will extend to the left. If
the divisor is less, the slide will extend to the
right. In either case, the quotient is the number
on the D scale that lies opposite the C scale in-
dex, falling within the limits of the D scale.
EXAMPLE: 6 +3 =2

1. Locate 6 on the D scale and place the
hairline of the indicator over it.

2. Move the slide until 3 on the C scale is
under the hairline.

3. Opposite the left C scale index, read the
quotient, 2, on the D scale.

EXAMPLE: 378 + 63 = 6

1. Locate 378 on the D scale and move the
hairline of the indicator over it.

2. Move the slide to the left until 63 on the
C scale is under the hairline.

3. Opposite the right-hand index of the C
scale, read the quotient, 6, on the D scale.

Practice problems. Determine the following
quotients by slide rule.

1. 126 + 3 3. 142 - 71

2. 960 - 15 4. 459 + 17
Answers:

1. 42 3. 2

2. 64 4. 27

PLACING THE DECIMAL POINT

Various methods have been advancedregard-
ing the placement of the decimal point in num-
bers derived from slide rule computations.
Probably the most universal and most easily
remembered method is that of approximation.
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The method of approximation means simply
the rounding off of numbers and the mechanical
shifting of decimal points in the numbers of the
problem so that the approximate size of the
solution and the exact position of the decimal
point will be seen from inspection. The slide
rule may then be used to derive the correct se-
quence of significant digits. The method may
best be demonstrated by a few examples. Re-
member, shifting the decimal point in a number
one place to the left is the same as dividing by
10. Shifting it one place to the right is the
same as multiplying by 10. Every shift must
be compensated for in order for the solution to
be correct.

EXAMPLE: 0.573 x 1.45

SOLUTION: No shifting of decimals is neces-
sary here, We see that approximately 0.6 is to
be multiplied by approximately 1 1/2. Immedi-
ately, we see that the solution is in the neigh-
borhood of 0.9. By slide rule we find that the
significant digit sequence of the product is 832.
From our approximation we know that the deci-
mal point is to the immediate left of the first
significant digit, 8. Thus,

0.573 x 1.45 = 0.832

EXAMPLE: 239 x 52.3

SOLUTION: For ease in multiplying, we shift
the decimal point in 52.3 one place to the left,
making it 5.23. To compensate, the decimal
point is shifted to the right one place in the
other factor. The new position of the decimal
point is indicated by the presence of the caret
symbol.
239.0/\ X 5/\2.3

Our problem is approximately the same as
2,400 x 5 = 12,000

By slide rule the digit sequence is 125. Thus,
239 x 52.3 = 12,500

EXAMPLE: 0.000134 x 0.092

SOLUTION:

Shifting decimal points, we have
0/\00.000134 X 0.09/\2

90

Approximation: 9 x 0.0000013 = 0.0000117.
By slide rule the digit sequence is 123. From
approximation the decimal point is located as
follows:

0.0000123
Thus,
0.000134 x 0.092 = 0.0000123
EXAMPLE: 53.1
42.4

SOLUTION: The decimal points are shifted so

that the divisor becomes a number between 1

and 10. The method employed is cancellation.
Shifting decimal points, we have

(3]

A3.1

——n

2.4

'S
&N

Approximation: 5 _ 1.2
E =1,

Digit sequence by slide rule:

1255

Placing the decimal point from the approxi-
mation:

1.255
Thus,
‘51:2‘—21 = 1.255
EXAMPLE: 0.00645
0.0935
SOLUTION:

Shifting decimal points

0.00,645
0.09,35

Approximation:

95‘3 = 0.07

Digit sequence by slide rule: 690
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Placing the decimal point from the approxi-
mation:

0.0690
Thus,
0.00645
m = 0.0690

Practice problems. Solve the following
problems with the slide rule and use the method
of approximation to determine the position of
the decimal point:

1. 0.00453 x 0.1645 3. 0.0362 x 1.21
2. 53.1 + 1.255 4. 67 + 316

Answers:
1. 0.000745 3. 0.0438
2. 424 4. 0.212
MULTIPLICATION AND
DIVISION COMBINED

In problems such as

0.644 x 330

161 x 12

it is generally best to determine the position of
the decimal point by means of the method of
approximation and to determine the significant
digit sequence from the slide rule. Such prob-
lems are usually solved by dividing and multi-
plying alternately throughout the problem. That
is, we divide 0.644 by 161, multiply the quotient
by 330, and divide that product by 12,
Shifting decimal points, we have

0,0.644 x 3,30
1,61 x 1,2

Since there is a combined shift of three places
to the left in the divisor, there must also be a
combined shift of three places to the left in the
dividend.
2
0.06 x 3
13

The step-by-step process of determining the
significant digit sequence of this problem is as
follows:

Approximation: = 0.06 x 2 = 0.12
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1. Place the hairline over 644 on the D scale.

2. Draw the slide so that 161 of the C scale
lies under the hairline opposite 644.

3. Opposite the C scale index (on the D scale)
is the quotient of 644 + 161. This is to be mul-
tiplied by 330, but 330 projects beyond the rule
so the C scale indices must be shifted.

4. After shifting the indices, find 330 on the
C scale and place the hairline over it. Opposite
330 under the hairline on the D scale is the

644
product of 161 X 330.

5. Next, move the C scale until 12 is under
the hairline. Opposite the C scale index (on the
D scale) is the final quotient. The digit se-
quence is 110.

The decimal point is then placed according
to our approximation: 0.11. Thus,

0.644 x 330

Terx 12 - 01U

Practice problems. .Solve the following
problems, using a slide rule:

1. 22 x 78.5 x 157
17 x 18.3 x 85

2. 432 x 9,600

25,600 x 198
3. 2.77 x 0.064
0.17 x 1.97
Answers:
1. 10.2 2. 0.817 3. 0.529
SQUARES

Squares of numbers are found by reference
to the A scale. The numberson the A scale are
the squares of those on the D Scale. The A
scale is really a double scale, each division
being one-half as large as the corresponding
division on the D scale. The use of a double
scale for squaring is based upon the fact that
the logarithm of the square of a number istwice
as large as the logarithm of the number itself.
In other words,

log N2 =2 log N
This is reasonable, since

log N2

log (N x N)
log N + log N
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For a numerical example, suppose that we
seek to square 2 by means of logarithms.

log 2 = 0.301

log 22 = 2 log 2
=2 x 0.301
= 0.602

Since each part of the A scale is half as
large as the corresponding part of the D scale,
the logarithm 0.602 on the A scale will be the
same length as the logarithm 0.301 on the D
scale, That is, these logarithms will be oppo-
site on the A and D scales. On the A scale as
on the D scale, the numbers are written rather
than their logarithms. Select several numbers
on the D scale, such as 2, 4, 8, 11, and read
their squares on the A scale, namely 4, 16,
64, 121,

Notice also that the same relation exists for
the B and C scales as for the A and D scales.
Of interest, also, is the fact that since the A
and B scales are made up as are the C and D
scales, they too could be used for multiplying
or dividing.

Placing the Decimal Point

Usually the decimal may be placed by the
method of approximation. However, close ob-
servation will reveal certain facts that elimi-
nate the need for approximations in squaring
numbers. Two rules suffice for squaring whole
or mixed numbers, as follows:

1. When the square of a number is read on
the left half of the A scale, that number will
contain twice the number of digits to the left of
the decimal point in the original number, less 1.

2. When the square of a number is read on
the right half of the A scale, that number will
contain twice the number of digits to the left of
the decimal point in the original number.

EXAMPLE: Square 2.5.

SOLUTION: Place the hairline over 25 on the
D scale, Read the digit sequence, 625, under
the hairline in the left half of the A scale.

By rule 1: (2 xnumberof digits)-1 = 2(1)-1=1.
There is one digit to the left of the decimal
point. Thus,

(2.5)% = 6.25
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EXAMPLE: Square 6,340.

SOLUTION:

Digit sequence, right half A scale: 402.
By rule 2: 2 x number of digits =2x4 =8
(digits in answer). Thus,

(6,340)2 = 40,200,000
Positive Numbers Less Than One

If positive numbers less than one are to be
squared, a slightly different version of the pre-
ceding rules must be employed. Count the
zeros between the decimal point and the first
nonzero digit. Consider this count negative.
Then the number of zeros between the decimal
point and the first significant digit of the
squared number may be found as follows:

1. Left half A scale: Multiply the zeros
counted by 2 and subtract 1.

2. Right half A scale: Multiply the zeros

counted by 2.
EXAMPLE: Square 0.0045

SOLUTION:

Digit sequence, right half A scale: 2025,
By rule 2: 2(-2) = -4, (Thus, 4 zeros be-
tween the decimal point and the first digit.)

(0.0045) 2= 0.07002025
EXAMPLE: Square 0.0215
SOLUTION:

Digit sequence, left half A scale: 462.
By rule 1: 2(-1) -1 =-3

(0.0215) 2= 0.000462

SQUARE ROOTS

Taking the square root of a number with the
slide rule is the inverse process of squaring a
number. We find the number on the A scale,
set the hairline of the indicator over it, and
read the square root on the D scale under the
hairline.

Positioning Numbers on the A Scale

Since there are two parts of the A scale
exactly alike and the digit sequence could be
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found on either part, a question arises as to
which section to use. Generally, we think of
the left half of the rule as being numbered from
1 to 10 and the right half as being numbered
from 10 to 100. The numbering continues- left
half 100 to 1,000, right half 1,000 to 10,000, and
so forth,

A simple process provides a check of the
location of the number from which the root is
to be taken. For whole or mixed numbers, be-
gin at the decimal pointof the number and mark
off the digits to the left (including end zeros) in
groups of two. This isillustrated in the follow-
ing two-examples:

1. ~40,300.21
~'4'03'00.21

2. ~Z2,034.1
N20'34.1

Look at the left-hand group. If it is a 1-digit
number, use the left half of the A scale. If it
is a 2-digit number, use the right half of the A
scale. The number in example 1 is thus located
in the left half of the A scale and the number in
example 2 is located in the right half.

Numbers Less Than One

For positive numbers less than one, begin at
the decimal point and mark off groups of two to
the right. This is illustrated as follows:

1. ~0.000245
N0.00'02'45

2. ~0.00402
~0.00'40'2

Looking from left to right, locate the firstgroup
that contains a digit other than zero. If the
first figure in this group is zero, locate the
number in the left half of the A scale, If the
first figure is other than zero, locate the num-
ber in the right half of the A scale. Thus,

~G.00702745 1is located left
and

ND.00'40'2 is located right

93

Powers of 10

When the square root of 10, 1,000, 100,000,
and so forth, is desired, the center index is
used. That is, when the number of digits in a
power of 10 is even, use the center index.

The slide rule uses only the first three
significant digits of a number. Thus, if the
rule is used, ~23451.6 must be considered as
N23500.0. Likewise, 1.43567 would be consid-
ered 1.43000, and so forth. For greater accu-
racy, other methods must be used.

Practice problems. State which half of the
A scale should be used for each of the following:

1. V432 5. ~4,320
2. ~0.014 6. ~0.00301
3. ~241.67 7. ~0.0640
4. ~0.00045 8. ~9.41
Answers:

1. Left 5. Right

2. Left 6. Right

3. Left 7. Left

4, Left 8. Left

Placing the Decimal Point

To place the decimal point in the square
root of a number, mark off the original number
in groups of two as explained previously.

For whole or mixed numbers, the number of
groups marked off is the number of digits in-
cluding end zeros to the left of the decimal
point in the root. The following problems il-
lustrate this:

1. 25,415
V2315 Three digits to left of dec-
imal point in square root
2. V421,582.4
N42715'62.4 Three digits to left of dec-
imal point in square root
3. ~231.321
V2731321 Two digits to left of deci-

mal point in square root
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For positive numbers less than one, there
will be one zero in the square root between the
decimal point and the first significant digit for
every pair of zeros counted between the deci-
mal point and the first significant digit of the
original number. This isillustrated as follows:

1. ~0.0004
N0.00'04 One zero before first digit
in square root
2. ~0.00008
N0.00'00'8 Two zeros before first digit
in square root
3. V0.08' No zeros before first digit
in square root
EXAMPLE: V4,521
N45'21

(Two digits in left-hand group)

Place the hairline over 452 on the right half of
the A scale. Read the digit sequence of the
root, 672, on the D scale under the hairline.
Since there are two groups in the original num-
ber, there are two digits to the left of the deci-
mal point in the root. Thus,

NT521 = 67.2

~0.000741
N'0.00'07'41

(First figure is zero in this group)

EXAMPLE:

Place the hairline over 741 on the left half of
the A scale. Read the digit sequence of the
root, 272, under the hairline on the D scale.
Since there is one pair of zeros to the left of
the group containing the first digit, there is one
zero between the decimal point and the first
significant digit of the root. Thus,

~0.000741 = 0.0272

Practice problems. Evaluate each of the
following by means of a slide rule:

1. (17.75) 3. 9.42
2. (0.65)2 4. ~D.074
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Answers:
1. 315 3. 3.07
2, 0.422 4. 0.272

CUBES AND CUBE ROOTS

Cubes and cube roots are read on the K and
D scales of the slide rule. On the K scale are
compressed three complete logarithmic scales
in the same space as that of the D scale. Thus,
any logarithm on the K scale is three times the
logarithm opposite it on the D scale. To cube
a number by logarithms, we multiply its loga-
rithm by three. Therefore, the logarithms of
cubed numbers will lie on the K scale opposite
the numbers on the D scale.

As with the other slide rule scales men-
tioned, the numbers the logarithms represent,
rather than the logarithmic notations, are
printed on the rule. In the left-hand third of
the K scale, the numbers range from 1 to 10; in
the middle third they range from 10 to 100; and
in the right-hand third, they range from 100 to
1,000. )

To cube a number, find the number on the D
scale, place the hairline over it, and read the
digit sequence of the cubed number on the K
scale under the hairline,

Placing the Decimal Point

The decimal point of a cubed whole or mixed
number may be easily placed by application of
the following rules:

1. If the cubed number is located in the left
third of the K scale, its number of digits to the
left of the decimal point is 3 times the number
of digits to the left of the decimal point in the
original number, less 2.

2. If the cubed number is located in the
middle third of the K scale, its number of digits
is 3 times the number of digits of the original
number, less 1.

3. If the cubed number is located in the
right third of the K scale, its number of digits
is 3 times the number of digits of the original
number.
EXAMPLE: (1.6)°
SOLUTION: Place the hairline over 16 on D
scale. Read the digit sequence, 409, on the K
scale under the hairline.
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Number of digits to left of decimal point in the
number 1.6 is 1 and the cubed number is in the
left-hand third of the K scale.
3 x (No. of digits)-2 = (3 x 1)-2
=1
Therefore,
(1.6)% = 4.09

EXAMPLE: (4.1)3

Digit sequence = 689.

SOLUTION: Number of digits to left of decimal
point in the number 4.1 is 1, and the cubed
number is in the middle third of the K scale.
3 x (No. of digits)-1 = (3 x 1)-1
=2

Therefore,
4.1)° = 68.9

EXAMPLE: (52)°

SOLUTION: Digit sequence = 141.

Number of digits to left of decimal point in the
number 52 is 2, and the cubed number is in the
right-hand third of the K scale.

3 x No. of digits = 3 x 2
=6
Therefore,
(52)° = 141,000

Positive Numbers Less Than One

¥ positive numbers less than one are to be
cuybed, count the zeros between the decimal
point and the first nonzero digit. Consider the
count negative. Then the number of zeros be-
tween the decimal point and the first significant
digit of the cubed number may be found as
follows:

1. Left third of K scale: Multiply the zeros
counted by 3 and subtract 2.

2. Middle third of K scale:
zeros counted by 3 and subtract 1.

3. Right third of K scale: Multiply the zeros
counted by 3.

Multiply the
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EXAMPLE: Cube 0.034
SOLUTION: Digit sequence = 393

Zero count of 0.034 = -1, and 393 is in the mid-
dle third of the K scale.

3 x (No. of zeros)-1 = (3 x -1)-1 = -4

Therefore,
(0.034)° = 0.0000393

Practice problems. Cube the following num-
bers using the slide rule.

1. 21 2. 0.7 3. 0.0128 4, 40¢
Answers:

1. 9260 3. 0.0000021

2. 0.342 4. 66,000,000

Cube Roots

Taking the cube root of a number on the
slide rule is the inverse process of cubing a
number. To take the cube root of a number,
find the number on the K scale, set the hairline
over it, and read the cube root on the D scale
under the hairline,

POSITIONING NUMBERS ON THE K SCALE.—
Since a given number can be located in three
positions on the K scale, the question arises as
to which third of the K scale to use when locat-
ing a number. Generally, the left index, the
left middle index, the right middle index, and
the right index are considered to be numbered
as shown in figure 8-7.

1 1
1 1 1 1
! T T =1
I 10 100 1,000
1,000 10,000 100,000 1,000,000

Figure 8-7.—Powers of 10 associated with
K-scale indices.

A system similar to that used with square
roots may be used to locate the position of a
number on the K scale. Groups of three are
used rather than groups of two. The grouping
for cube root is illustrated as follows:
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1. V40,531.6
Y40'531.6

2. ¥4,561.43
¥47561.43

3. 30.000043

X0.000'043

For whole or mixed numbers the following
rules apply:

1. K the left-hand group contains one digit,
locate the number in the left third of theK scale.

2. K the left group contains two digits, lo-
cate the number in the middle third of the K
scale.

3. ¥ the left group contains three digits,
locate the number in the right third of the K

scale.
The following examples illustrate the fore-
going rules:

1. V4'561.43
(One digit)—left third K scale.

2. Y40'531.6
(Two digits)—middle third K scale.

3. V4537361
(Three digits)—right third of K scale.

For positive numbers less than one, look
from left to right and find the first group that
contains a digit other than zero.

1. K the first two figures in this group are
zeros, locate the number in the left third of the
K scale.

2. B only the first figure in this group is
zero, locate the number in the middle third of
the K scale.

3. H the first figure of the group is not zero,
locate the number in the right third of the K
scale.

The following examples illustrate these
rules:

1. ¥0.0007004'53
(Two zeros)-—left third K scale.

2. 0.000'050'43
(One zero)—middle third K scale.
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3. 0.000'000'430
(No zero)—right third K scale.

PLACING THE DECIMAL POINT.—To place
the decimal point in the cube root of a number,
we use the system of marking off in groups of
three as shown above.

For whole or mixed numbers, there is one
digit in the root to the left of the decimal point
for every group marked in the original number.
Thus,

V75316
(Two digits in root to left of decimal point.)

For positive numbers less than one, there
will be one zero in the root between the decimal
point and the first significant digit for every
three zeros counted between the decimal point
and the first significant digit of the original
number. Thus,

70.0007000°004

(Two zeros between decimal point and first sig-
nificant digit of root.)

V180004

21670004
(Three digits in left group)

EXAMPLE:

Place the hairline over 216 in the right third of
the K scale. Read the digit sequence, 6, under
the hairline on the D scale. Since there are
two groups in the original number, there are
two digits to the left of the decimal point in the
root. Thus,

3180004 = 60

Ao o000451
0.000"045"1
(Only first figure is zero in this group)

EXAMPLE:

Place the hairline over 451 in the middle third
of the K scale. Read the digit sequence, 357,
under the hairline on the D scale. Since there
is one group of three zeros, there is one zero
between the decimal point and the first signifi-
cant digit of the root. Thus,

3

~0.0000451 = 0.0357
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POWERS OF 10.—To take the cube root of a 4, 3«/204,000 d.s. 589
power of 10, mark it off as explained in the 3
preceding paragraphs. The number in the left 5. N'734,000,000 d. s. 902
group will then be 1, 10, or 100. We know that 3
the cube root of 10 is a number between 2 and 6. V4,913 d.s. 17
3. Thus, for the cube root of any number whose
left group is 10, use the K scale index which Answers:
lies between 2 and 3 on the D scale. The cube
root of 100 lies between 4 and 5. Therefore, 1. 0.02844
for a number whose left group is 100, use the K
scale index between 4 and 5 on the D scale. 2. 0.3711

Practice problems. Following are some
problems and the digit sequence (d. s.) of the 3. 5.026
roots. Locate the decimal point for each root.

4. 58.9

1. ¥0.000023 d.s. 2844
2. Y0051 d.s. 37 5. 902
3. Y177 d.s. 5026 6. 17
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